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Abstract: Various disturbances such as adverse weather conditions may result in delayed or canceled flights
and affect the optimized schedules planned for airline crew members. In this paper, we solve the recovery
problem via an integrated approach to reoptimize both the pairings and the personalized monthly plans. We
solve this problem simultaneously for the pilots and copilots to obtain robust schedules that have the same
pairings for pilots and copilots when possible. We propose a set partitioning formulation and we use column
generation. We present results for seven instances from a major US carrier.
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1 Introduction

Because of its complexity, the airline decision-making procedure is usually divided into planning and recovery

stages (Klabjan, 2005; Belobaba et al., 2009). The planning stage is frequently further subdivided into

flight scheduling, fleet assignment, aircraft maintenance and routing, and crew scheduling (Kasirzadeh et al.,

2015). Crew scheduling is then separated into crew pairing and crew assignment (Barnhart et al., 2003;

Gopalakrishnan and Johnson, 2005; Kasirzadeh et al., 2015). The crew pairing problem builds a minimum-

cost set of pairings based on the scheduled flights such that the collective agreements and rules are respected.

A pairing is a sequence of duties and overnight stops that starts and ends at a crew base. A duty is

a sequence of flights (and/or deadheads) that forms a working day for a crew member; the duties are

separated by overnight stops. Each crew member is associated with a base located at a large airport. A

monthly schedule is a sequence of pairings separated by time off. The crew assignment problem combines the

pairings, vacations, preassigned activities, and rest periods to build a set of monthly schedules that respect the

regulations and the collective agreement. The assignment procedure is either bidline or personalized. In the

bidline approach, anonymous monthly schedules are constructed and assigned to crew members. Personalized

assignment is either a rostering or seniority-based procedure. The rostering approach aims to maximize the

global satisfaction, whereas the seniority-based approach maximizes the satisfaction of the crew members in

seniority order. Traditionally, the crew pairing and crew assignment problems have been solved sequentially;

more recently, some researchers have integrated the two steps.

On the day of operation, external and/or internal perturbations may occur. These perturbations include

late or absent crew members, aircraft breakdowns and unscheduled maintenance, security delays, air traffic

control adjustments for meteorological reasons, and severe weather patterns such as snow storms. These

disruptions result in delayed or canceled flights. Data from the Bureau of Transportation Statistics show that

from 2005 to 2013 on average 20.39% of scheduled flights were delayed and 1.91% were canceled. Delayed

and canceled flights directly affect the crew schedules, and adjustments become necessary. The recovery

procedure is complex because it includes fleet reassignment and maintenance recovery, crew pairing and

monthly schedule recovery, and passenger-itinerary recovery. These steps are often solved sequentially: first

the flights are rescheduled, then the aircraft are rerouted, the crew schedules are updated, and the itineraries

are adjusted. This traditional approach is presented in Figure 1.

Flight Rescheduling Aircraft Rerouting Crew Rescheduling Itinerary Recovery

Figure 1: Schematic of sequential airline recovery procedure

In this paper, we focus on the crew rescheduling (recovery) problem, because the cost of the crew members

is the second largest cost for airlines (after fuel). The algorithms for the crew recovery problem are similar to

those applied for planning purposes. However, there are five major differences between the crew recovery and

crew planning problems. First, the crew recovery problem cannot be separated into pairing and assignment

steps. The updated pairings have to fit into the monthly schedules, so it is necessary to integrate the

construction of new pairings and the adjustment of the monthly schedules. Second, the pilots and copilots

must be treated simultaneously. The pairings should be the same for pilots and copilots, when possible, to

maintain the robustness of the solution. When they are not the same, one flight perturbation will affect two

different pairings, which will then affect more flights, and so the perturbation propagates through the monthly

schedule. Third, the crew recovery problem must be solved quickly, whereas the crew planning problem is

solved several weeks prior to operation. Fourth, the crew planning problem has a planning horizon that is

frequently one month, whereas crew recovery reoptimizes the schedules locally for a period of a few days;

therefore, the dimension of the optimization problem is reduced. Fifth, the objectives of crew planning

are usually cost minimization and efficient crew utilization, whereas crew recovery has several conflicting

objectives. These include minimizing the crew delays and minimizing the cost of the recovery operations.

The recovery problem must be small enough to be solved in a reasonable time, but its reoptimization

domain must be sufficiently large to permit us to find feasible schedules for the rescheduled tasks. The main

concern is to cover, in the most cost-efficient way, the set of flights while remaining as close as possible to
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the original schedules. It is important to minimize the number of flights that cannot be operated due to lack

of sufficient crew. Crew recovery may involve rescheduling crew or deploying reserve crew members.

The contribution of this paper is an optimization approach for the integrated recovery of pairings and

schedules for pilots and copilots simultaneously. This integrated approach considers both the pairing reop-

timization and the recovery of monthly crew schedules, given all the relevant regulations. The problem is

solved for pilots and copilots simultaneously to provide more robust schedules that reduce the propagation of

perturbations. The rescheduled flights are input data. To the best of our knowledge, this paper presents the

first mathematical programming method for the simultaneous recovery problem for pilots and copilots. Our

main contribution is to demonstrate that a mathematical programming method can solve the personalized

recovery problem for instances with up to 610 pilots and copilots in a reasonable time. We use column

generation (CG).

The remainder of this paper is organized as follows. In Section 2, we provide a comprehensive literature

review of crew recovery. Section 3 provides a detailed description of the problem, and Section 4 gives the

mathematical formulation. Section 5 explains our algorithm, Section 6 gives our results, and Section 7

provides concluding remarks.

2 Literature review

Short computational times are required for airline recovery optimization, so the optimization problem must

be small. We can either consider fewer crew members or restrict the time span of the reoptimization window.

To the best of our knowledge, the first survey of irregular airline operations is that by Clarke (1998b).

He gives an extensive overview of the operations control center with respect to irregularities. He presents

decision-support systems and algorithms based on operational data from the US domestic market. Filar et al.

(2001) and Kohl et al. (2007) survey the state-of-the-art of decision-making for the airline recovery problem.

They report on their research and development for large-scale airline disruption management. Another survey

of the management of disruption in the airline industry is provided by Clausen et al. (2010). They also report

a comparative study of aircraft/crew planning and recovery to explore the similarities between the solution

approaches. Barnhart and Smith (2012) provide an overview of the role of OR in improving airline efficiency

at the operational level.

Research on this topic began with investigations of aircraft scheduling in the presence of irregular oper-

ations (Clausen et al., 2010). This is a less complex problem: there are fewer aircraft than crew members

and the aircraft rules are simpler than the crew-scheduling regulations. Teodorović and Guberinić (1984),

Teodorović and Stojković (1990), Jarrah et al. (1993), Rakshit et al. (1996), Mathaisel (1996), Talluri (1996),

Yan and Yang (1996), Clarke (1998a), Clarke (1997), Yan and Tu (1997), Cao and Kanafani (1997a), Cao

and Kanafani (1997b), Luo and Yu (1997), Argüello et al. (1997), Luo and Yu (1998), Thengvall et al. (2000),

Thengvall et al. (2001), Thengvall et al. (2003), Bard et al. (2001), Rosenberger et al. (2003), Andersson and

Värbrand (2004), Andersson (2006), Liu et al. (2006), Liu et al. (2008), Eggenberg et al. (2007), and Zhao

and Zhu (2007) studied aircraft recovery. We do not review this literature because the problem is not the

focus of this paper.

There are three versions of the crew recovery problem. The first assumes that the flight schedules have

already been recovered, i.e., the recovered flight schedules are input data for the crew recovery problem. Wei

et al. (1997) and Song et al. (1998) provide a generalized set covering formulation for the crew pairing repair

problem with reserve crew members. The objective is to repair the disturbed pairings as soon as possible

while minimizing the cost. The branch and bound heuristic gives good results for small instances. Stojković

et al. (1998) propose a set partitioning formulation for the operational crew scheduling problem and apply

CG. They minimize the cost of covering all the flights with available crew members and minimize the crew

disturbances. They allow only one modified pairing per crew member. To find the new pairings, they solve the

crew pairing and the personalized monthly assignment problems simultaneously. They report results for small
instances (with up to 32 crews and 210 flights) over one-day and seven-day periods. Medard and Sawhney

(2007) expand the framework of Stojković et al. (1998) by permitting more than one modified pairing for each
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of the disrupted crew schedules. They propose an integrated pairing and assignment set covering problem in

which the rescheduled flights replace the pairings. They solve the rescheduling problem by CG and provide

results for small and medium instances. Nissen and Haase (2006) present a set covering formulation and

a branch-and-price approach for the duty-period-based recovery problem for European airlines. They use

CG and report results for small instances. Guo (2005) formulates the recovery problem as a set partitioning

problem with the objective of minimizing the modifications to the planned schedule. CG and a genetic

algorithm are used to find a balance between solution quality and computational time.

The second version of the problem allows flight cancellations. Johnson et al. (1994) present a set covering

formulation. They take into account pairing and deadheading costs while forcing crew members to retain the

same bases in the new solution. Results are presented for small instances. Lettovský et al. (2000) present a

set covering formulation. They use a fast pairing generator and a branch and price technique, successfully

handling small to medium disruptions. The pairing generation is designed to minimize the modifications to

the original schedule. Yu et al. (2003) discuss the implementation of a crew recovery decision support system

at Continental Airlines; it is a refined version of the model of Wei et al. (1997). They report good results

and short computational times for small and medium instances.

The third version of the problem allows flight departures to be delayed. Stojković and Soumis (2001)

extend the work of Stojković et al. (1998), presenting a set covering model and a CG approach. Reserve

crew members are also allowed. They present results for instances with up to 59 pilots with 52 flights

out of 190 being delayed. Stojković and Soumis (2005) extend this work. They simultaneously optimize

the modifications to the flight departure times and the individual duties. The objective is to cover the

maximum number of flights and to minimize the modifications to both the flights and the duties. Results for

medium instances are reported. Abdelghany et al. (2004) provide a crew recovery decision support system

for commercial hub-and-spoke airlines; they present good results for medium instances.

Since 1997 researchers have tried to integrate the different steps of the airline recovery problem. Lettovský

(1997) presents an integrated approach for aircraft, crew, and passenger recovery and proposes an algorithm

based on Benders decomposition. Bratu and Barnhart (2006) solve the passenger recovery problem while

limiting the scheduling costs resulting from the perturbations. They permit delayed or canceled flights, and

they make use of spare aircraft and reserve crew members. Zhang and Hansen (2008) present a model for a

hub-and-spoke network that uses various modes of transportation to accommodate passengers whose travel

plans have been perturbed. Abdelghany et al. (2008) present a commercial integrated approach to recovery

when flights are delayed by severe weather conditions. Simultaneous recovery for aircraft and passengers is

explored by Bisaillon et al. (2011) and Jafari and Zegordi (2011). Petersen et al. (2012) present a mathematical
model and CG-based algorithm for the integrated flight, aircraft, crew, and passenger recovery problem. They

give results for the hub-and-spoke network of a US carrier. Zhang and Lau (2014) present a set partitioning

formulation for integrated flight, aircraft, and crew recovery. They provide a rolling-horizon algorithm and

give results for small and medium instances from a US carrier.

3 Problem description

The goal of crew recovery is to quickly produce good solutions that cover the perturbed flights. Compared

to the planning problem, crew recovery is more localized, focusing on the components that are affected by

disturbances. Although only small portions of the crew schedules are affected, all the rules and regulations

must continue to be satisfied for the full month. It is important to keep pilot-copilot pairs together in the new

duties and pairings; this helps to ensure more robust schedules. Figure 2 shows the reoptimization window

to illustrate the reduced size of the crew recovery problem.

Our primary goals for the simultaneous optimization of the pilot and copilot recovery problems are: (1)

recovering the pairings and monthly schedules together, (2) recovering the pairings and monthly schedules for

pilots and copilots simultaneously, and (3) solving the recovery problem quickly. We propose a heuristic that

iterates between the pilot recovery problem (PRP) and copilot recovery problem (CRP). At each iteration, the

PRP or the CRP is solved using CG. The objective is to cover all the flights (perturbed and unperturbed) that

lie within the reoptimization window while satisfying the preferences of the pilots and copilots, if possible.
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Pilot 1

Pilot 2

Pilot 3

Pilot 4

Pilot 5

Recovery Window

departure node

arrival node

start of vacation

end of vacation

flights

perturbed flights

vacation

other arcs

Figure 2: Reduced size of crew recovery problem

The algorithm starts from a set of monthly schedules for the pilots. In the first step, it takes the perturbed

flights into account and solves the PRP over the reoptimization window. The set of pairings that lies within

the recovery window is updated accordingly. This set of reoptimized pairings will fit within the monthly

schedules for the pilots and copilots. In the second step, given this new set of pairings and the initial

monthly schedules for the copilots, we solve the CRP. Using the new pairings obtained, we solve the PRP

again and so on. This process continues until a stopping criterion is satisfied. We use a stopping criterion (a

maximum number of iterations) because it may take a long time for the algorithm to converge. The algorithm

is illustrated in Figure 3.

(0-1) initial monthly
schedules for pilots

(1) pilot recovery problem (PRP)
within the reoptimization window

(2) copilot recovery problem (CRP)
within the reoptimization window

(0-2) initial monthly
schedules for copilots

stopping
criterion?

solution found

perturbed flights

new pairings for CRP

new pairings for PRP

No

Yes

Figure 3: Heuristic algorithm for integrated crew recovery problem
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4 Mathematical formulation

The simultaneous cockpit crew recovery problem is mathematically formulated using the following notation:

Sets

Fn: set of unperturbed flights in recovery window;

Fr: set of rescheduled flights;

Pr: set of feasible pairings overlapping recovery window;

L: set of pilots;

Vl,r: set of vacation preferences for pilot l ∈ L in recovery window;

Gl,r: set of preferred flights for pilot l ∈ L in recovery window;

Sl: set of feasible schedules for pilot l ∈ L;

Parameters

Crecovery
s,l : cost of personalized schedule s ∈ Sl for pilot l ∈ L during recovery window;

C̄f : penalty for not covering flight f ∈ Fn ∪ Fr;

Cp: cost of feasible pairing p ∈ Pr;

nls,r: number of preferred flights in recovery window in schedule s ∈ Sl for pilot l ∈ L;

clf,r: bonus for covering preferred flight f ∈ Gl,r for pilot l ∈ L;

clv: penalty for not covering vacation preference v ∈ Vl;

es,lf =

{
1 if flight f ∈ Fn ∪ Fr is covered by pilot l ∈ L in schedule s ∈ Sl

0 otherwise;

es,lp =

{
1 if pairing p ∈ Pr is covered by pilot l ∈ L in schedule s ∈ Sl

0 otherwise;

vs,lv =

{
1 if vacation v ∈ Vl,r is covered by schedule s ∈ Sl

0 otherwise;

Variables

xsl =

{
1 if schedule s ∈ Sl for pilot l ∈ L is chosen
0 otherwise;

ēf =

{
1 if flight f ∈ Fn ∪ Fr is not covered
0 otherwise.

The recovery formulation for PRP is:

min
∑
l∈L

∑
s∈Sl

Crecovery
s,l xsl +

∑
f∈Fn∪Fr

ēf C̄f (1)

s.t.
∑
l∈L

∑
s∈Sl

es,lf xsl + ēf = 1, ∀f ∈ Fn ∪ Fr (2)

∑
s∈Sl

xsl ≤ 1, ∀l ∈ L (3)

xsl ∈ {0, 1}, ∀l ∈ L,∀s ∈ Sl (4)

The recovery formulation for CRP is the same as (1)–(4) with the set of pilots (L) replaced by the set of

copilots. The cost of the personalized schedule within the recovery window for pilot l ∈ L is calculated via

Crecovery
s,l =

∑
p∈Pr

es,lp Cp + nls,rc
l
f,r +

∑
v∈Vl,r

(1− vs,lv )clv.
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The objective (1) minimizes the total cost associated with the pilot schedules restricted to the recovery

window. Constraints (2) ensure that perturbed and unperturbed flights within the reoptimization window

are covered exactly once. Constraints (3) assign at most one schedule to each pilot, and constraints (4) are

the binary requirements for the variables.

The schedule cost is composed of the pairing cost plus the penalties and bonuses for preferences. In

practice, the pairing cost has a complex nonlinear structure, and an approximation is often used. To calculate

the pairing cost, we use the cost function of Saddoune et al. (2013) that includes the deadhead, waiting, and

duty costs. We take the preferences into account by introducing bonuses and penalties. Our preliminary

results suggest a bonus of −50 for covering a preferred flight and a penalty of 5000 for not covering a vacation

preference. The cost of not covering a scheduled flight is set to 10000 (all costs are in dollars). These values

ensure that a good percentage of the preferences are satisfied while the gap remains small.

5 Algorithm

We use CG to solve the simultaneous personalized integrated recovery problem for pilots and copilots. CG

is one of the most practical approaches for large-scale mixed integer problems (Klabjan, 2005). The linear

relaxation of the recovery problem (1)–(4) is called the master problem. At each iteration of CG, we consider a

restricted master problem (RMP) that contains a subset of the columns (variables). We solve the RMP using a

standard linear programming algorithm such as the simplex method. This gives an optimal objective-function

value and a pair of primal and dual solutions. Given this optimal dual solution, the current subproblem tries

to find columns with negative reduced costs. If such columns are found, they are added to the RMP for

the next iteration. Each subproblem corresponds to a resource-constrained shortest path problem, and we

solve it by dynamic programming. When no variable with a negative reduced cost can be found, the optimal

solution for the RMP is optimal for the master problem. In practice, because of slow convergence, the CG is

often stopped before optimality is reached. Two parameters determine the CG stopping criterion. We stop

the CG if in the last i iterations the objective value has decreased by less than a threshold α. These values

are selected based on preliminary tests: i is set to 25 for instances 1–5 and to 10 for instances 6–7, and α is

set to 0.001%. These choices greatly reduce the search domain for the optimization.

We can associate an acyclic network G, with node set N and arc set R, with each employee. To solve

the subproblems, we must find shortest paths within these networks with negative reduced costs that satisfy

the resource constraints. We use dynamic programming. We use the network structure, resources, and

label-setting algorithm of Kasirzadeh et al. (2014).

We use two branching strategies at each node of the branch and bound tree. The first strategy fixes all

the fractional values greater than a predetermined threshold to 1; we set the threshold to 0.85. The second

strategy forces two flights to be consecutive in a pairing. We choose the branching strategy for a given node

by computing a score for each strategy and choosing the strategy with the higher score.

6 Computational results

In this section, we present results for seven test instances. They are based on historical data for scheduled

flights operated by short- and medium-haul aircraft in a major North American airline. The reoptimization

is performed on monthly personalized schedules for pilots and copilots that are obtained by solving the

personalized crew scheduling problem. For instances 1–3 (which are small), we find the monthly schedules by

solving the simultaneous personalized integrated scheduling problems for pilots and copilots (Kasirzadeh et al.,

2014). For the larger instances 4–7, we construct the personalized monthly schedules using the sequential

approach presented by Kasirzadeh et al. (2015).

All the tests were executed on a Linux PC equipped with an Intel (R) Xeon (R) processor clocked at

2.93 GHz. The heuristic is coded in C++. We use the GENCOL column generation library (version 4.5) and
the linear programming solver CPLEX 12.4.
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We apply all the constraints used to construct personalized schedules for pilots and copilots at the planning

level. Severe weather is the hypothetical disturbance that we consider. We construct four scenarios for

disturbed flights. For each instance, we assume that the perturbations occur only in the largest base. The

four scenarios are:

1. The perturbation occurs between 5 p.m. and 6 p.m. on the 15th of the month. It results in a delay of

one hour for all the flights departing in this interval. The reoptimization window is from 4 p.m. on the

15th to 4 a.m. on the 16th.

2. This is identical to scenario 1 except that the perturbation results in a delay of two hours.

3. This perturbation affects 50% of the flights that arrive or depart between 4 p.m. and 6 p.m. on the

15th of the month. It results in a delay of two hours. The reoptimization window is from 1 p.m. on

the 15th to 4 a.m. on the 16th.

4. This perturbation affects 50% of the flights that arrive or depart between 10 a.m. and 1 p.m. on the

15th of the month. It results in a delay of one hour. The reoptimization window is from 8 a.m. on the

15th to 4 a.m. on the 16th.

Tables 1–7 present the features of each reoptimization problem and the results for each perturbation

scenario. The first five rows indicate the size of the reoptimization problem. The no. of crew members

indicates the number of pilots and copilots with planned schedules. The no. of active flights is the number of

flights within the recovery window. The no. of active duties and the no. of active pairings are the numbers

of duties and pairings that overlap the reoptimization window and are included in the recovery problem. The

no. of delayed flights is the number of delayed flights in the corresponding scenario.

We use three indicators to assess the algorithm: the no. of CG iterations indicates the total number

of CG iterations for the three iterations of the heuristic. The CPU time (in seconds for instances 1–3 and

minutes for instances 4–7) indicates the total CPU time for the three iterations. The gap is the percentage

difference between the LP solution and the integer solution. All the instances are solved in a reasonable

computational time. Except for instance 1 (the smallest instance), the gap is smaller than 1.03. In practice,

for small instances that are not hard to solve, it is advisable to apply different branching strategies when the

gap is greater than 1%.

We use six indicators to assess the solution quality. The pairing similarity is the percentage of common

pairings for pilots and copilots within the recovery window at the final iteration of the reoptimization process.

There are two ways to encourage common sets of duties and pairings. The first is to introduce soft constraints:

penalties for duties and pairings that are different. The second is to introduce hard constraints; this restricts

Table 1: Results for Instance 1

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Pilots Copilots Pilots Copilots Pilots Copilots Pilots Copilots

No. of crew members 33 33 33 33 33 33 33 33
No. of active flights 22 22 30 34
No. of active duties 12 12 13 13
No. of active pairings 12 12 13 13
No. of delayed flights 6 6 9 5

Total no. of CG iterations 70 73 78 84 75 84 111 99
Total CPU time (s) 1.50 1.20 1.70 1.20 1.60 1.30 2.40 1.50
Gap (%) 0.00 2.24 0.00 1.91 0.00 1.19 0.00 0.00
Pairing similarity (%) 100 100 76.92 100
Duty similarity (%) 100 100 76.92 100
No. of uncovered flights 1 1 1 1 1 0 0 0
Loss of flight -1.52 3.03 -1.52 -1.52 0.41 4.87 0.00 0.00
preferences (%)
Loss of vacation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
preferences (%)
Cost increase (%) 0.98 0.98 1.36 1.37 -1.42 11.05 2.49 2.50
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Table 2: Results for Instance 2

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Pilots Copilots Pilots Copilots Pilots Copilots Pilots Copilots

No. of crew members 34 34 34 34 34 34 34 34
No. of active flights 31 31 44 52
No. of active duties 16 16 17 18
No. of active pairings 15 15 16 17
No. of delayed flights 5 5 4 7

Total no. of CG iterations 66 63 66 63 140 115 129 147
Total CPU time (s) 0.90 0.90 0.90 0.90 3.00 2.20 3.00 4.20
Gap (%) 0.00 0.00 0.00 0.00 0.34 0.01 0.00 0.00
Pairing similarity (%) 80.00 80.00 100 100
Duty similarity (%) 81.25 81.25 100 100
No. of uncovered flights 0 0 0 0 0 0 0 0
Loss of flight 2.82 2.90 3.23 2.89 -0.59 0.33 0.08 0.04
preferences (%)
Loss of vacation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
preferences (%)
Cost increase (%) 4.25 4.31 4.71 4.92 2.21 2.23 3.31 0.04

Table 3: Results for Instance 3

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Pilots Copilots Pilots Copilots Pilots Copilots Pilots Copilots

No. of crew members 47 47 47 47 47 47 47 47
No. of active flights 41 41 51 63
No. of active duties 19 18 18 22
No. of active pairings 22 21 20 24
No. of delayed flights 6 6 4 10

Total no. of CG iterations 114 88 87 72 122 205 121 126
Total CPU time (s) 7.00 7.20 6.60 5.40 8.50 17.01 10.5 13.80
Gap (%) 1.03 0.84 0.00 0.00 0.00 0.07 0.00 0.00
Pairing similarity (%) 95.45 95.24 85.00 100
Duty similarity (%) 94.74 94.44 83.33 100
No. of uncovered flights 1 0 0 1 0 0 0 0
Loss of flight 5.88 0.60 -0.08 1.96 4.48 3.24 3.04 5.54
preferences (%)
Loss of vacation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
preferences (%)
Cost increase (%) 0.14 5.43 6.51 2.56 -1.88 -3.02 0.04 -0.04

Table 4: Results for Instance 4

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Pilots Copilots Pilots Copilots Pilots Copilots Pilots Copilots

No. of crew members 145 145 145 145 145 145 145 145
No. of active flights 125 125 162 188
No. of active duties 55 57 55 66
No. of active pairings 55 57 54 65
No. of delayed flights 12 12 11 9

Total no. of CG iterations 193 212 309 256 370 277 306 263
Total CPU time (min) 36.62 41.21 39.58 39.98 42.81 41.46 45.92 50.01
Gap (%) 0.00 0.00 0.09 0.10 0.13 0.02 0.00 0.00
Pairing similarity (%) 87.27 77.19 77.78 96.92
Duty similarity (%) 90.91 80.70 78.18 96.97
No. of uncovered flights 0 0 0 0 0 0 0 0
Loss of flight -4.30 -1.48 -5.16 -2.18 -1.81 1.49 1.70 0.93
preferences (%)
Loss of vacation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
preferences (%)
Cost increase (%) 5.43 2.21 4.91 1.89 2.38 0.27 1.02 1.14
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Table 5: Results for Instance 5

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Pilots Copilots Pilots Copilots Pilots Copilots Pilots Copilots

No. of crew members 247 247 247 247 247 247 247 247
No. of active flights 115 115 149 182
No. of active duties 88 88 96 103
No. of active pairings 89 89 96 101
No. of delayed flights 14 14 9 7

Total no. of CG iterations 168 153 145 144 192 180 231 234
Total CPU time (min) 11.43 11.21 8.35 8.24 11.71 11.30 12.92 14.60
Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Pairing similarity (%) 85.39 80.90 82.29 86.14
Duty similarity (%) 96.59 87.50 96.88 94.17
No. of uncovered flights 0 0 0 0 0 0 0 0
Loss of flight 0.00 4.99 0.00 5.07 0.00 -6.52 0.00 -8.64
preferences (%)
Loss of vacation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
preferences (%)
Cost increase (%) 0.26 0.53 1.55 0.58 1.47 3.90 2.66 4.51

Table 6: Results for Instance 6

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Pilots Copilots Pilots Copilots Pilots Copilots Pilots Copilots

No. of crew members 223 223 223 223 223 223 223 223
No. of active flights 129 129 169 197
No. of active duties 77 78 82 86
No. of active pairings 77 78 80 84
No. of delayed flights 13 13 12 8

Total no. of CG iterations 181 192 258 240 212 231 262 270
Total CPU time (min) 6.25 7.99 9.11 9.84 6.74 8.50 9.45 11.43
Gap (%) 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00
Pairing similarity (%) 92.21 92.31 95.00 95.24
Duty similarity (%) 100 100 100 100
No. of uncovered flights 0 0 0 0 0 0 0 0
Loss of flight -0.51 -0.60 -0.10 -0.01 -3.20 -0.59 -1.60 -2.17
preferences (%)
Loss of vacation 0 0 0 0 0 0 0 0
preferences (%)
Cost increase (%) 4.95 4.92 5.87 5.84 2.86 2.85 2.14 1.15

Table 7: Results for Instance 7

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Pilots Copilots Pilots Copilots Pilots Copilots Pilots Copilots

No. of crew members 305 305 305 305 305 305 305 305
No. of active flights 160 160 212 253
No. of active duties 113 113 121 127
No. of active pairings 115 115 122 126
No. of delayed flights 9 9 23 12

Total no. of CG iterations 209 212 217 220 277 265 321 324
Total CPU time (min) 19.76 18.33 22.37 18.90 27.16 22.63 32.94 30.45
Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pairing similarity (%) 93.91 97.35 89.34 95.28
Duty similarity (%) 97.35 97.39 92.56 92.06
No. of uncovered flights 0 0 0 0 0 0 0 0
Loss of flight -4.40 -3.37 -4.40 -3.37 5.53 4.18 5.14 6.02
preferences (%)
Loss of vacation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
preferences (%)
Cost increase (%) 4.14 1.71 4.24 1.81 4.21 1.48 3.89 1.83
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the domain of exploration. In this study, we use soft constraints. Our preliminary results show that an

acceptable level of similarity is achieved when we set the penalty to 300.

The duty similarity is the percentage of common duties for pilots and copilots in the reoptimization

window at the final iteration of the heuristic. The no. of uncovered flights indicates the number of flights

in the reoptimization window that are uncovered despite the penalty imposed. The loss of flight preferences

is the percentage of flight preferences lost after the perturbation, and the loss of vacation preferences is the

percentage of vacation preferences lost. Negative losses indicate that more preferences are satisfied. The cost

increase is the percentage increase in the cost of the portion of the monthly schedules within the recovery

window.

For the test instances, the pairing similarity varies between 76.92% and 100% (with an average of 90.61%

over all the tests). The duty similarity ranges between 76.92% and 100% (with an average of 93.33% over

all the tests). This is an acceptable level of common pairings in a reoptimization context. In practice, the

associated penalty could be lower or higher, depending on the importance that the airline attaches to common

pairings and duties. Except in some of the scenarios for instances 1 and 3, all the flights are covered. The

bonus for preferred flights gives an acceptable cost increase for the pilots and copilots and an acceptable loss

of flight preferences after the reoptimization process. The bonus could be lower or higher depending on the

importance that the airline attaches to flight preferences. We cannot yet provide an analysis of how changes

to the bonus will impact the cost of the schedules; this is a complex situation. One direction for further

research is a study of the relationship between the bonus and the costs of the schedules. In our tests, none

of the vacation preferences are lost after the perturbation.

7 Summary and conclusions

We have proposed a new set partitioning formulation and a new heuristic that solves the integrated person-

alized recovery problem for pilots and copilots simultaneously. Our results indicate that the reoptimization

algorithm covers the perturbed flights with an acceptable cost increase and loss of flight preferences. It can

solve instances with up to 610 pilots and copilots in a reasonable computational time.
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